
5.3 Bandwidth of FM Signals

5.26. FM: The “Holy Grail” Technique for BW Saving?
In the 1920s, the idea of frequency modulation (FM) was naively proposed

very early as a method to conserve the radio spectrum. The argument was
presented as follows:

• If m(t) is bounded between −mp and mp, then the maximum and mini-
mum values of the (instantaneous) carrier frequency would be fc+kfmp

and fc − kfmp, respectively. (Think of this as a delta function shifting
to various location between fc + kfmp and fc − kfmp in the frequency
domain.)

• Hence, the spectral components would remain within this band with a
bandwidth 2kfmp centered at fc.

• Conclusion: By using an arbitrarily small k, we could make the infor-
mation bandwidth arbitrarily small (much smaller than the bandwidth
of m(t).

In 1922, Carson argued that this is an ill-considered plan. We will illustrate
his reasoning later. In fact, experimental results shows that

As a result of his observation, FM temporarily fell out of favor.

5.27. Armstrong (1936) reawakened interest in FM when he realized it
had a much different property that was desirable. When the kf is large, the
inverse mapping from the modulated waveform xFM(t) back to the signal
m(t) is much less sensitive to additive noise in the received signal than is
the case for amplitude modulation. FM then came to be preferred to AM
because of its higher fidelity. [1, p 5-6]
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Finding the “bandwidth” of FM Signals turns out to be a difficult task.
Here we present a few approximation techniques.

5.28. First, from 5.21, we see that both FM and PM can be viewed as

x(t) = A cos (2πfct+ θ0 + φ(t)) (72)

where φ(t) = (m ∗ h)(t) if h(t) is selected properly.
The Fourier transform of φ(t) is Φ(f) = M(f)H(f). So, if M(f) is

band-limited to B, we know that Φ(f) is also band-limited to B as well.
Now, let us rewrite (72) as

x(t) = ARe
{
ej(2πfct+θ0+φ(t))

}
= ARe

{
ej(2πfct+θ0)ejφ(t)

}
(73)

Recall that Taylor series expansion of ez around z = 0 is

ez =
∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+
z3

3!
+ · · · .

Plugging in z = jφ(t) gives

ejφ(t) = 1 + jφ(t) +
(jφ(t))2

2!
+

(jφ(t))3

3!
+ · · · = 1 + jφ(t)− φ2(t)

2!
+ (−j) φ

3(t)

3!
+ · · · (74)

Applying the Euler’s formula

ej(2πfct+θ0) = cos (2πfct+ θ0) + j sin (2πfct+ θ0)

and (74) to (73) gives

x (t) = A

(
cos (2πfct+ θ0)− φ(t) sin (2πfct+ θ0)−

φ2(t)

2!
cos (2πfct+ θ0) +

φ3(t)

3!
sin (2πfct+ θ0) + · · ·

)
.

Recall that if φ(t) is band-limited to B, then φn(t) is band-limited to nB. With such series, there

is no bound for the value of n and therefore, we conclude that the absolute bandwidth would be

infinite.

5.29. Narrowband Angle Modulation: When φ(t) is small, we may
approximate ez by z + 1. Therefore,

ejφ(t) ≈ 1 + jφ(t). (75)

Applying the Euler’s formula

ej(2πfct+θ0) = cos (2πfct+ θ0) + j sin (2πfct+ θ0)
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and (75) to (73) gives

x(t) = ARe
{
ej(2πfct+θ0)ejφ(t)

}
≈ ARe {(cos (2πfct+ θ0) + j sin (2πfct+ θ0)) (1 + jφ(t))}
= A cos (2πfct+ θ0)− Aφ(t) sin (2πfct+ θ0)

• The “approximated” expression of x(t) is similar to AM.

◦ The first term yields a carrier component. The second term gen-
erates a pair of sidebands. Thus, if φ(t) has a bandwidth B, the
bandwidth of x(t) is 2B.

• The important difference between AM and angle modulation is that
the sidebands are produced by multiplication of the message-bearing
signal, φ(t), with a carrier that is in phase quadrature with the carrier
component, whereas for AM they are not.

• The FM signal whose

∣∣∣∣2πkf t∫
−∞

m (τ)dτ

∣∣∣∣ � 1 is called narrowband

FM (NBFM). The PM signal whose |kpm(t)| � 1 is called narrow-
band PM (NBPM). Note that these conditions are satisfied when
kf � 1 or kp � 1, respectively. [6, p 260]

• For larger values of |φ(t)| the terms φ2(t), φ3(t), . . . in (74) cannot be ignored and will

increase the bandwidth of x(t).

• Recall, from (32) that

g(t) cos(2πfct+ φ)
F−−−⇀↽−−−
F−1

1

2

(
ejφG(f − fc) + e−jφG(f + fc)

)
.

Therefore, when

x (t) ≈ A cos (2πfct+ θ0)−Aφ (t) cos (2πfct+ θ0 − 90◦) ,
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we have

X (f) ≈ A

2

(
ejθ0δ(f − fc) + e−jθ0δ(f + fc)− ej(θ0−90

◦)Φ(f − fc)− e−j(θ0−90
◦)Φ(f + fc)

)
=
A

2

(
ejθ0δ(f − fc) + e−jθ0δ(f + fc) + jejθ0Φ(f − fc)− je−jθ0Φ(f + fc)

)
.

5.30. Wideband FM (WBFM): For potentially wideband m(t), here,
we present a technique to roughly estimate the bandwidth of xFM(t).

To do this, we consider m(t) that is a piecewise constant function (also
known as step function or staircase function); this implies that the instan-
taneous frequency f(t) = fc+kfm(t) of xFM(t) is also piecewise constant as
shown in Figure 40.
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Figure 40: FM for
discrete-valued (digital)
message

For example, we can consider the transmitted signal xFM(t) constructed
from five different tones. Its instantaneous frequency is increased from f1

to f5.
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Rate = Rs frequency-changes per second

Each tone lasts 

1/Rs sec.  

Figure 41: xFM(t) for discrete-valued (digital) message in Figure 40.
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Assume that each tone lasts Ts = 1
Rs

[s] where Rs is called the “(symbol)
rate” of the data transmission. The value of Rs indicates how fast the values
of m(t) is changed. Increasing the value of Rs reduces the time to complete
the transmission.

Recall that the Fourier transform of a cosine contains simply (two shifted
and scaled) delta functions at the (plus and minus) frequency of the cosine.
However, recall also that when we consider the cosine pulse, which is time-
limited, its Fourier transform contains (two) sinc functions. In particular,
the cosine pulse

p (t) =

{
cos (2πf0t) , t1 ≤ t < t2,
0, otherwise,

can be viewed as the pure cosine function cos (2πf0t) multiplied by a rect-
angular pulse r (t) = 1 [t1 ≤ t < t2]. By (31), we know that multiplication
by cos (2πf0t) will shift the spectrum R(f) of the rectangular pulse to ±fc
and scaled its values by a factor of 1

2 : P (f) = 1
2R (f − f0) + 1

2R (f + f0)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

-0.5

0

0.5

1

t [s]

x(
t)

-200 -150 -100 -50 0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

f [Hz]

|X
(f)

|

Cos Pulse

1

ݔ ݐ ൌ ቊcos ߨ2 100 ݐ , 0.5 ൑ ݐ ൑ 0.6,
0, otherwise.

Figure 42: Cosine pulse
and its spectrum which
contains two sinc func-
tions at ± freqeuncy of
the cosine (which is 100
Hz in the figure). When
the pulse only lasts for
a short time period, the
sinc pulses in the fre-
quency domain are wide.

where the Fourier transform24 R(f) of the rectangular pulse is given by

R (f) = (t2 − t1) e−jπf(t1+t2) sinc (πf (t2 − t1)) .
24To get this, first consider the rectangular pulse of width t2 − t1 centered at t = 0. From (15), the

corresponding Fourier transform is 2
(
t2−t1

2

)
sinc

(
2π
(
t2−t1

2

)
f
)
. Finally, by time-shifting the rectangular

pulse in the time domain by t2+t1
2 , we simply multiply the Fourier transform by e−2πf(

t2−t1
2 ) in the

frequency domain.
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See Figure 42 for an example.
When m(t) is piecewise constant, xFM(t) is a sum of cosine pulses. There-

fore, its spectrum X(f) will be the sum of the sinc functions centered at the
frequencies of the pulses as shown in Figure 43.
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Figure 43: A digital version of FM: xFM(t) and the corresponding XFM(f).

• X(f) extends to ±∞. It is not band-limited.

• One may approximate its bandwidth by assuming that “most” of the
energy in the sinc function is contained in its main lobe which is at
± 1
Ts

= ±Rs from its peak. Therefore, the bandwidth of xFM(t) becomes

BWFM ≈ Rs + (fmax − fmin) +Rs = (fmax − fmin) + 2Rs
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